Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 6(5): e0095121, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546073

RESUMO

Chemosensory pathways are among the most abundant prokaryotic signal transduction systems, allowing bacteria to sense and respond to environmental stimuli. Signaling is typically initiated by the binding of specific molecules to the ligand binding domain (LBD) of chemoreceptor proteins (CRs). Although CRs play a central role in plant-microbiome interactions such as colonization and infection, little is known about their phylogenetic and ecological specificity. Here, we analyzed 82,277 CR sequences from 11,806 representative microbial species covering the whole prokaryotic phylogeny, and we classified them according to their LBD type using a de novo homology clustering method. Through phylogenomic analysis, we identified hundreds of LBDs that are found predominantly in plant-associated bacteria, including several LBDs specific to phytopathogens and plant symbionts. Functional annotation of our catalogue showed that many of the LBD clusters identified might constitute unknown types of LBDs. Moreover, we found that the taxonomic distribution of most LBD types that are specific to plant-associated bacteria is only partially explained by phylogeny, suggesting that lifestyle and niche adaptation are important factors in their selection. Finally, our results show that the profile of LBD types in a given genome is related to the lifestyle specialization, with plant symbionts and phytopathogens showing the highest number of niche-specific LBDs. The LBD catalogue and information on how to profile novel genomes are available at https://github.com/compgenomicslab/CRs. IMPORTANCE Considering the enormous variety of LBDs at sensor proteins, an important question resides in establishing the forces that have driven their evolution and selection. We present here the first clear demonstration that environmental factors play an important role in the selection and evolution of LBDs. We were able to demonstrate the existence of LBD families that are highly enriched in plant-associated bacteria but show a wide phylogenetic spread. These findings offer a number of research opportunities in the field of single transduction, such as the exploration of similar relationships in chemoreceptors of bacteria with a different lifestyle, like those inhabiting or infecting the human intestine. Similarly, our results raise the question whether similar LBD types might be shared by members of different sensor protein families. Lastly, we provide a comprehensive catalogue of CRs classified by their LBD region that includes a large number of putative new LBD types.

2.
Mol Plant Pathol ; 21(12): 1606-1619, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33029921

RESUMO

Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.


Assuntos
Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/efeitos da radiação , Solanum lycopersicum/microbiologia , Transcriptoma/efeitos da radiação , Proteínas de Bactérias/genética , Quimiotaxia/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Fotorreceptores Microbianos/genética , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Virulência/efeitos da radiação
3.
Front Plant Sci ; 11: 973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714356

RESUMO

The study of host range determinants within the Pseudomonas syringae complex is gaining renewed attention due to its widespread distribution in non-agricultural environments, evidence of large variability in intra-pathovar host range, and the emergence of new epidemic diseases. This requires the establishment of appropriate model pathosystems facilitating integration of phenotypic, genomic and evolutionary data. Pseudomonas savastanoi pv. savastanoi is a model pathogen of the olive tree, and here we report a closed genome of strain NCPPB 3335, plus draft genome sequences of three strains isolated from oleander (pv. nerii), ash (pv. fraxini) and broom plants (pv. retacarpa). We then conducted a comparative genomic analysis of these four new genomes plus 16 publicly available genomes, representing 20 strains of these four P. savastanoi pathovars of woody hosts. Despite overlapping host ranges, cross-pathogenicity tests using four plant hosts clearly separated these pathovars and lead to pathovar reassignment of two strains. Critically, these functional assays were pivotal to reconcile phylogeny with host range and to define pathovar-specific genes repertoires. We report a pan-genome of 7,953 ortholog gene families and a total of 45 type III secretion system effector genes, including 24 core genes, four genes exclusive of pv. retacarpa and several genes encoding pathovar-specific truncations. Noticeably, the four pathovars corresponded with well-defined genetic lineages, with core genome phylogeny and hierarchical clustering of effector genes closely correlating with pathogenic specialization. Knot-inducing pathovars encode genes absent in the canker-inducing pv. fraxini, such as those related to indole acetic acid, cytokinins, rhizobitoxine, and a bacteriophytochrome. Other pathovar-exclusive genes encode type I, type II, type IV, and type VI secretion system proteins, the phytotoxine phevamine A, a siderophore, c-di-GMP-related proteins, methyl chemotaxis proteins, and a broad collection of transcriptional regulators and transporters of eight different superfamilies. Our combination of pathogenicity analyses and genomics tools allowed us to correctly assign strains to pathovars and to propose a repertoire of host range-related genes in the P. syringae complex.

4.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575767

RESUMO

Chemotaxis has been associated with the pathogenicity of bacteria in plants and was found to facilitate bacterial entry through stomata and wounds. However, knowledge regarding the plant signals involved in this process is scarce. We have addressed this issue using Pseudomonas syringae pv. tomato, which is a foliar pathogen that causes bacterial speck in tomato. We show that the chemoreceptor P. syringae pv. tomato PscA (PsPto-PscA) recognizes specifically and with high affinity l-Asp, l-Glu, and d-Asp. The mutation of the chemoreceptor gene largely reduced chemotaxis to these ligands but also altered cyclic di-GMP (c-di-GMP) levels, biofilm formation, and motility, pointing to cross talk between different chemosensory pathways. Furthermore, the PsPto-PscA mutant strain showed reduced virulence in tomato. Asp and Glu are the most abundant amino acids in plants and in particular in tomato apoplasts, and we hypothesize that this receptor may have evolved to specifically recognize these compounds to facilitate bacterial entry into the plant. Infection assays with the wild-type strain showed that the presence of saturating concentrations of d-Asp also reduced bacterial virulence.IMPORTANCE There is substantive evidence that chemotaxis is a key requisite for efficient pathogenesis in plant pathogens. However, information regarding particular bacterial chemoreceptors and the specific plant signal that they sense is scarce. Our work shows that the phytopathogenic bacterium Pseudomonas syringae pv. tomato mediates not only chemotaxis but also the control of pathogenicity through the perception of the plant abundant amino acids Asp and Glu. We describe the specificity of the perception of l- and d-Asp and l-Glu by the PsPto-PscA chemoreceptor and the involvement of this perception in the regulation of pathogenicity-related traits. Moreover, a saturating concentration of d-Asp reduces bacterial virulence, and we therefore propose that ligand-mediated interference of key chemoreceptors may be an alternative strategy to control virulence.


Assuntos
Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Biofilmes , Quimiotaxia/genética , Genes de Plantas , Guanosina Monofosfato/metabolismo , Ligantes , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Virulência/genética
5.
PLoS One ; 14(6): e0218815, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31237890

RESUMO

Multidrug resistance efflux pumps protect bacterial cells against a wide spectrum of antimicrobial compounds. PSPTO_0820 is a predicted multidrug transporter from the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000. Orthologs of this protein are conserved within many Pseudomonas species that interact with plants. To study the potential role of PSPTO_0820 in plant-bacteria interaction, a mutant in this gene was isolated and characterized. In addition, with the aim to find the outer membrane channel for this efflux system, a mutant in PSPTO_4977, a TolC-like gene, was also analyzed. Both mutants were more susceptible to trans-cinnamic and chlorogenic acids and to the flavonoid (+)-catechin, when added to the culture medium. The expression level of both genes increased in the presence of (+)-catechin and, in the case of PSPTO_0820, also in response to trans-cinnamic acid. PSPTO_0820 and PSPTO_4977 mutants were unable to colonize tomato at high population levels. This work evidences the involvement of these two proteins in the resistance to plant antimicrobials, supporting also the importance of chlorogenic acid, trans-cinnamic acid, and (+)-catechin in the tomato plant defense response against P. syringae pv. tomato DC3000 infection.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Genes Bacterianos , Interações entre Hospedeiro e Microrganismos/genética , Solanum lycopersicum/metabolismo , Mutação , Proteínas de Plantas/metabolismo , Virulência/genética
6.
Environ Microbiol ; 20(12): 4261-4280, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30058114

RESUMO

Light is pervasive in the leaf environment, creating opportunities for both plants and pathogens to cue into light as a signal to regulate plant-microbe interactions. Light enhances plant defences and regulates opening of stomata, an entry point for foliar bacterial pathogens such as Pseudomonas syringae pv. tomato DC3000 (PsPto). The effect of light perception on gene expression and virulence was investigated in PsPto. Light induced genetic reprogramming in PsPto that entailed significant changes in stress tolerance and virulence. Blue light-mediated up-regulation of type three secretion system genes and red light-mediated down-regulation of coronatine biosynthesis genes. Cells exposed to white light, blue light or darkness before inoculation were more virulent when inoculated at dawn than dusk probably due to an enhanced entry through open stomata. Exposure to red light repressed coronatine biosynthesis genes which could lead to a reduced stomatal re-opening and PsPto entry. Photoreceptor were required for the greater virulence of light-treated and dark-treated PsPto inoculated at dawn as compared to dusk, indicating that these proteins sense the absence of light and contribute to priming of virulence in the dark. These results support a model in which PsPto exploits light changes to maximize survival, entry and virulence on plants.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Folhas de Planta/microbiologia , Pseudomonas syringae/fisiologia , Pseudomonas syringae/efeitos da radiação , Solanum lycopersicum/microbiologia , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Indenos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Fator sigma/metabolismo , Ativação Transcricional , Sistemas de Secreção Tipo III/genética , Virulência/genética
7.
Sci Rep ; 7: 46254, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393892

RESUMO

Integrases are a family of tyrosine recombinases that are highly abundant in bacterial genomes, actively disseminating adaptive characters such as pathogenicity determinants and antibiotics resistance. Using comparative genomics and functional assays, we identified a novel type of mobile genetic element, the GInt, in many diverse bacterial groups but not in archaea. Integrated as genomic islands, GInts show a tripartite structure consisting of the ginABCD operon, a cargo DNA region from 2.5 to at least 70 kb, and a short AT-rich 3' end. The gin operon is characteristic of GInts and codes for three putative integrases and a small putative helix-loop-helix protein, all of which are essential for integration and excision of the element. Genes in the cargo DNA are acquired mostly from phylogenetically related bacteria and often code for traits that might increase fitness, such as resistance to antimicrobials or virulence. GInts also tend to capture clusters of genes involved in complex processes, such as the biosynthesis of phaseolotoxin by Pseudomonas syringae. GInts integrate site-specifically, generating two flanking direct imperfect repeats, and excise forming circular molecules. The excision process generates sequence variants at the element attachment site, which can increase frequency of integration and drive target specificity.


Assuntos
Bactérias/genética , Genes Bacterianos , Genes Essenciais , Ilhas Genômicas/genética , Recombinação Genética , Sequência de Bases , DNA Bacteriano/genética , DNA Circular/genética , Óperon/genética , Especificidade da Espécie
8.
Environ Microbiol ; 18(12): 4847-4861, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27234490

RESUMO

Recent scenarios of fresh produce contamination by human enteric pathogens have resulted in severe food-borne outbreaks, and a new paradigm has emerged stating that some human-associated bacteria can use plants as secondary hosts. As a consequence, there has been growing concern in the scientific community about these interactions that have not yet been elucidated. Since this is a relatively new area, there is a lack of strategies to address the problem of food-borne illnesses due to the ingestion of fruits and vegetables. In the present study, we performed specific genome annotations to train a supervised machine-learning model that allows for the identification of plant-associated bacteria with a precision of ∼93%. The application of our method to approximately 9500 genomes predicted several unknown interactions between well-known human pathogens and plants, and it also confirmed several cases for which evidence has been reported. We observed that factors involved in adhesion, the deconstruction of the plant cell wall and detoxifying activities were highlighted as the most predictive features. The application of our strategy to sequenced strains that are involved in food poisoning can be used as a primary screening tool to determine the possible causes of contaminations.


Assuntos
Bactérias/isolamento & purificação , Aprendizado de Máquina , Plantas/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Frutas/microbiologia , Humanos , Verduras/microbiologia
9.
PLoS One ; 10(8): e0136101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313942

RESUMO

The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.


Assuntos
Genoma Bacteriano , Doenças das Plantas/genética , Pseudomonas syringae/genética , Locos de Características Quantitativas , Sequência de Bases , Dados de Sequência Molecular
10.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26109133

RESUMO

Genome sequencing and annotation have revealed a putative cellulose biosynthetic operon in the strain Pseudomonas syringae pv. syringae UMAF0158, the causal agent of bacterial apical necrosis. Bioinformatics analyses and experimental methods were used to confirm the functionality of the cellulose biosynthetic operon. In addition, the results showed the contribution of the cellulose operon to important aspects of P. syringae pv. syringae biology, such as the formation of biofilms and adhesion to the leaf surface of mango, suggesting that this operon increases epiphytic fitness. However, based on the incidence and severity of the symptoms observed in tomato leaflets, cellulose expression reduces virulence, as cellulose-deficient mutants increased the area of necrosis, whereas the cellulose-overproducing strain decreased the area of necrosis compared with the wild type. In conclusion, the results of this study show that the epiphytic and pathogenic stages of the P. syringae pv. syringae UMAF0158 lifestyle are intimately affected by cellulose production.


Assuntos
Celulose/biossíntese , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Sequência de Bases , Biofilmes , Celulose/metabolismo , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Óperon , Folhas de Planta/microbiologia , Virulência/genética
11.
PLoS One ; 10(4): e0119317, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25867189

RESUMO

T346Hunter (Type Three, Four and Six secretion system Hunter) is a web-based tool for the identification and localisation of type III, type IV and type VI secretion systems (T3SS, T4SS and T6SS, respectively) clusters in bacterial genomes. Non-flagellar T3SS (NF-T3SS) and T6SS are complex molecular machines that deliver effector proteins from bacterial cells into the environment or into other eukaryotic or prokaryotic cells, with significant implications for pathogenesis of the strains encoding them. Meanwhile, T4SS is a more functionally diverse system, which is involved in not only effector translocation but also conjugation and DNA uptake/release. Development of control strategies against bacterial-mediated diseases requires genomic identification of the virulence arsenal of pathogenic bacteria, with T3SS, T4SS and T6SS being major determinants in this regard. Therefore, computational methods for systematic identification of these specialised machines are of particular interest. With the aim of facilitating this task, T346Hunter provides a user-friendly web-based tool for the prediction of T3SS, T4SS and T6SS clusters in newly sequenced bacterial genomes. After inspection of the available scientific literature, we constructed a database of hidden Markov model (HMM) protein profiles and sequences representing the various components of T3SS, T4SS and T6SS. T346Hunter performs searches of such a database against user-supplied bacterial sequences and localises enriched regions in any of these three types of secretion systems. Moreover, through the T346Hunter server, users can visualise the predicted clusters obtained for approximately 1700 bacterial chromosomes and plasmids. T346Hunter offers great help to researchers in advancing their understanding of the biological mechanisms in which these sophisticated molecular machines are involved. T346Hunter is freely available at http://bacterial-virulence-factors.cbgp.upm.es/T346Hunter.


Assuntos
Genoma Bacteriano , Internet , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
Stand Genomic Sci ; 10: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685259

RESUMO

Pseudomonas fluorescens strain PICF7 is a native endophyte of olive roots. Previous studies have shown this motile, Gram-negative, non-sporulating bacterium is an effective biocontrol agent against the soil-borne fungus Verticillium dahliae, the causal agent of one of the most devastating diseases for olive (Olea europaea L.) cultivation. Here, we announce and describe the complete genome sequence of Pseudomonas fluorescens strain PICF7 consisting of a circular chromosome of 6,136,735 bp that encodes 5,567 protein-coding genes and 88 RNA-only encoding genes. Genome analysis revealed genes predicting factors such as secretion systems, siderophores, detoxifying compounds or volatile components. Further analysis of the genome sequence of PICF7 will help in gaining insights into biocontrol and endophytism.

13.
Mol Plant Pathol ; 16(7): 685-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25487519

RESUMO

Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant-pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft-rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound-derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF-0020167 and ABF-0046680) in the chemotaxis-driven entry process through plant wounds. Our data suggest that ABF-0020167 and ABF-0046680 may be candidate receptors of jasmonic acid and xylose, respectively.


Assuntos
Arabidopsis/microbiologia , Enterobacteriaceae/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo
14.
Front Plant Sci ; 6: 1209, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779238

RESUMO

The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighboring the infiltrated areas after 2-3 days post-inoculation) included: (i) inhibition of photosynthesis in terms of photosystem II efficiency; (ii) activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and (iii) accumulation of secondary metabolites in cell walls of the epidermis (lignins) and the apoplast of the mesophyll (phytoalexins). Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid, jasmonic acid, and salicylic acid. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii.

15.
FEMS Microbiol Ecol ; 90(3): 895-907, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25331301

RESUMO

Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits.


Assuntos
Proteínas de Bactérias/fisiologia , Erwinia amylovora/patogenicidade , Doenças das Plantas/microbiologia , Fator sigma/fisiologia , Proteínas de Bactérias/genética , Eriobotrya/microbiologia , Erwinia amylovora/enzimologia , Erwinia amylovora/genética , Genes Bacterianos , Resposta ao Choque Térmico/genética , Hexosiltransferases/metabolismo , Mutação , Pressão Osmótica , Estresse Oxidativo/genética , Polissacarídeos Bacterianos/metabolismo , Pyrus/microbiologia , Rosaceae/microbiologia , Fator sigma/genética , Virulência/genética
16.
Environ Microbiol ; 16(7): 2072-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24033935

RESUMO

Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Transdução de Sinal Luminoso/genética , Fotorreceptores Microbianos/genética , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Aderência Bacteriana/efeitos da radiação , Proteínas de Bactérias/metabolismo , Luz , Movimento , Fotorreceptores Microbianos/classificação , Fotorreceptores Microbianos/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/classificação , Pseudomonas syringae/genética , Pseudomonas syringae/efeitos da radiação , Virulência
17.
Mol Plant Microbe Interact ; 27(5): 424-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24329173

RESUMO

Pseudomonas savastanoi pv. savastanoi NCPPB 3335 causes olive knot disease and is a model pathogen for exploring bacterial infection of woody hosts. The type III secretion system (T3SS) effector repertoire of this strain includes 31 effector candidates plus two novel candidates identified in this study which have not been reported to translocate into plant cells. In this work, we demonstrate the delivery of seven NCPPB 3335 effectors into Nicotiana tabacum leaves, including three proteins from two novel families of the P. syringae complex effector super-repertoire (HopBK and HopBL), one of which comprises two proteins (HopBL1 and HopBL2) that harbor a SUMO protease domain. When delivered by P. fluorescens heterologously expressing a P. syringae T3SS, all seven effectors were found to suppress the production of defense-associated reactive oxygen species. Moreover, six of these effectors, including the truncated versions of HopAA1 and HopAZ1 encoded by NCPPB 3335, suppressed callose deposition. The expression of HopAZ1 and HopBL1 by functionally effectorless P. syringae pv. tomato DC3000D28E inhibited the hypersensitive response in tobacco and, additionally, expression of HopBL2 by this strain significantly increased its competitiveness in N. benthamiana. DNA sequences encoding HopBL1 and HopBL2 were uniquely detected in a collection of 31 P. savastanoi pv. savastanoi strains and other P. syringae strains isolated from woody hosts, suggesting a relevant role of these two effectors in bacterial interactions with olive and other woody plants.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Olea/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas/genética , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Transporte Biológico , Biologia Computacional , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Mutação , Filogenia , Folhas de Planta/microbiologia , Estrutura Terciária de Proteína , Pseudomonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Virulência/genética
18.
Annu Rev Phytopathol ; 50: 425-49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22702350

RESUMO

Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Enterobacteriaceae/patogenicidade , Doenças das Plantas/microbiologia , Plantas/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/química , Enterobacteriaceae/fisiologia , Insetos/microbiologia , Íons/metabolismo , Pectobacterium/química , Pectobacterium/patogenicidade , Pectobacterium/fisiologia , Virulência
19.
Cell Microbiol ; 14(5): 669-81, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233353

RESUMO

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression.


Assuntos
Cisteína Proteases/metabolismo , Interações Hospedeiro-Patógeno , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Pseudomonas syringae/enzimologia , Solanum lycopersicum/microbiologia , Fatores de Virulência/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Solanum lycopersicum/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Mapeamento de Interação de Proteínas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/patogenicidade , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
20.
Mol Plant Microbe Interact ; 25(4): 523-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22204647

RESUMO

Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial peptides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Enterobacteriaceae/patogenicidade , Perfilação da Expressão Gênica , Genoma Bacteriano , Mutação , Peptídeos Cíclicos , Plantas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...